If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16(t^2-10t-75)=0
We multiply parentheses
-16t^2+160t+1200=0
a = -16; b = 160; c = +1200;
Δ = b2-4ac
Δ = 1602-4·(-16)·1200
Δ = 102400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{102400}=320$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-320}{2*-16}=\frac{-480}{-32} =+15 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+320}{2*-16}=\frac{160}{-32} =-5 $
| 24x+40x2=0 | | 1/4(25x+3/5)=-2.5–3/8x | | 2t+6=11 | | 5q^2-8=2q | | $6^{2n+1}+6^2=6^n+6^{n+3}$ | | 10x^2+78x+180=0 | | 2x+6x-8=48 | | 5x+3(-2-x)=-11 | | 7x−42+2x=x+14 | | 2x+1=92x | | 4y-y-9=7 | | 4t=46 | | −16(x−4)=832 | | X-x/8=17/8 | | 3c+8(c-7/4)=-21 | | (17x-3x)+(6x-2x)=75 | | (13x+7x)-(16x-2x)=13 | | 9x-3(3x-1)=3 | | 13x=21+10x. | | (18x-4x)+(10x-8x)=50 | | (14x-8x)-(6x-3x)=17 | | (x+1)(x–3)=0 | | (4x-8x)-(6x-3x)=17 | | (a+8)(a−7)=0(a+8)(a-7)=0 | | 4x+12=-30-3 | | (9x+5x)-(3x+2x)=21 | | 10+2x=25 | | 5/x=21 | | (21x+12x)-(15x+11x)=21 | | −5(x+3)=7x+5 | | 1x3=3 | | 9m-3(m-3)=15+7 |